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A controlled fourth-order linear mechanical system, containing a vibrating member, is considered. Geometric constraints are 
imposed on the control and phase variables. The problem of bringing the system to a given state in a finite time is solved. The 
solution employs an approach based on Kalman’s general scheme for constructing controls as linear combinations of characteristic 
motions of the uncontrolled system. Results of a numerical simulation of the dynamics of a closed system are presented. 0 2001 
Elsevier Science Ltd. All rights reserved. 

We consider the problem of damping the vibrations of a load attached at the end of an elastic beam, 
using an active dynamic damper with a translating mass. The control variable will be the interaction 
force between the damper and the load. Systems of this type are used, for example, in spacecraft (SC), 

where measuring devices are mounted on a platform (P) at a considerable distance from the main 
body of the spacecraft, using a long rod. High accuracy in positioning and stabilizing the measuring 
instruments is required in order to perform measurements; hence; it is of paramount importance to 
damp any vibrations of the rod, and this must be taken into consideration in spacecraft design. One 
way to solve the problem is to use a controllable damper situated on the platform itself. The damper 
consists of guide 1 perpendicular to the axis of the rod 2, and a movable mass 3 which can be displaced 
along the guide by an electric drive (Fig. 1). This scheme is suitable for damping transverse vibrations 
of the rod. 

A particular feature of this problem is the presence of two natural constraints on the different variables 
of the system. One, due to the restricted possibilities of the drive, is imposed on the control force; the 
other, due to the finiteness of the path of the damper mass (the damper guide is finite in size), is imposed 
on the displacement of the second mass relative to the first. 

Thus, the problem may be classed as a problem with mixed constraints, that is, constraints imposed 
on different variables of the system. To solve it, we propose to use an approach based on Kalman’s general 
scheme for constructing controls as linear combinations of characteristic motions of the uncontrolled 
system [2]. This approach has been extended to the case where the control function is subject to 
constraints [3,4]. 

1. FORMULATION OF THE PROBLEM 

Under certain simplifying assumptions [l], the following two-mass mechanical control system containing 
a vibrating member (Fig. 2) may serve as a model for the structures just described. Two bodies, of masses 
ml and m2, move along a horizontal straight line. The first body is connected to a fixed base by a spring 
of stiffness k > 0. The second body is connected to the first by a drive which generates a force u. The 
equations of motion of the system are 

m,j; + ky = -u. m2i’=u (1.1) 

where y is the coordinate of the first body and z is the coordinate of the second body on the straight 
line. The following constraint is imposed on the control force u 

lu(t)l~u, a>0 (1.2) 

and the displacement of the first body relative to the first must satisfy the condition 

I z(t)- y(t) I c d, d > 0 (1.3) 
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Fig. 1 

Fig. 2 

It is required to construct a control u(t) which satisfies constraint (1.2) and which brings system (1.1) 
from the given initial state 

to the rest state 

y(0) = y”. j(O) = y”, z(0) = z”, i(0) = i” (1.4) 

Y(T) = z(T) = 0, j(T) = i(T) = 0 (1.5) 

The coordinatesy(t) and z(f) must satisfy condition (1.3) throughout the whole motion, whose completion 
time T is not fixed. 

We introduce the new variables 

xl = ky. x3 = m,kz 1 m, , t’=(kIm,)% (1.6) 

In terms of the new variables, system (1.1) becomes 

x, +A-, = -11, x, = l4 (1.7) 

and constraint (1.3) has the form lm1x3/m2 - xi1 s kd. We introduce a constant vector ,v+ = (- 1, 0, 
m1/m2, 0) and rewrite the last inequality as follows: 

lp’x(r) 1 c kd (1.8) 

The dots in Eqs (1.7) and later denote derivatives with respect to the new time t’. Henceforth the prime 
on t’ will be omitted. 

Put R, = x2, R3 = x4. After the change of variables (1.6), conditions (1.4) and (1.5) become 

Xi(O) =x9, 
- 

x;(T) = 0, i = 1.4 (1.9) 

where xp are certain given constants and T > 0 is the as yet unknown completion time of the 
process. 

The problem reduces to constructing a control that will satisfy constraint (1.2) and bring system (1.7) 
from the given initial state (1.9) to the origin while observing constraint (1.8) throughout the whole 
motion. 

2. CONSTRUCTION OF THE CONTROL 

Let x = (xi, x2, x3 = x4) denote the phase vector of system (1.7); we rewrite the system in vector form 
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(2.1) i=Ax+bu 

0 1 0 0” 0 

-I 0 0 0 -1 
A= 

0001’ 
b= 

0 

0 0 0 0 I 

The initial and final conditions (1.9) may be written as follows: 

X(0) = x0, X(T) = 0 (2.2) 

Following Kalman’s approach [2], we will seek the control as a linear combination of characteristic 
motions of the homogeneous (uncontrolled) system (2.1) 

We introduce the notation 

s = sin t, c=cost (2.3) 

The fundamental matrix of the solutions of the homogeneous system and its inverse have the form 

csoo C -s 0 0 

@(t) -s 0 0 c s c O O = 
00 t’ 

@-yt) = 
1 0 0 1 -t 

0001 0 00 I 

Consider the vector 

h(t) = @-‘(t)b, h’(t) = (s, -c, -t, 1) 

and the matrices 

s2 --SC -ts s 

Q(t) = h(t)h’(t)= -K ‘* ” -’ 
-0 tc t2 -t 

s -c -t 1 

(2.4) 

(2.5) 
(t-SC)/2 -s2/2 tc - s l-c 

R(t) = I; Q(r)& = 
-s2/2 (t+sc)/2 ts+c-1 -s 

tc - s ts+c-1 t3/3 -t2 I2 

I-C -S -r22 t 

The expression for the control function u(t) which brings system (2.1) from the initial statex’ to the 
origin of the phase space may be written as follows [2]: 

u(t) = VT@, 7-p, V(t, T) = -a-‘(T)h(t) (2.6) 

3. SATISFACTION OF THE CONSTRAINTS 
ON THE CONTROL FUNCTION 

We will show that, if the completion time T of the process is taken to be fairly long, one can guarantee 
that the control u(t) will satisfy constraints (1.2). To that end, we estimate the function u(t) as follows: 

(3.1) 

where II.1 I I and II.1 1, denote the norms in the spaces R$ and Rt, respectively, which have the following 
form for an arbitrary vector q 
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l1411~=,~~~41~j I* llSll,=~ lqi.1 
i=l 

We introduce the auxiliary function 

and rewrite estimate (3.1) as follows: 

max 
OsrcT 

I u(f) I s u CT) II x0 111 

(3.2) 

(3.3) 

We propose two ways of determining the completion time of the motion for which constraints (1.2) 
will be observed. The first is based on an analytical estimate of the function v(T) and the second on a 
numerical construction of the function. 

We first choose T to be T = 21rn, where it is a natural number. In that case the matrixR(T) is simplified: 

T/2 0 T 0 

0 T/2 0 0 
R(T)= T O 

T3/3 -T2/1 

0 0 -T212 T 

and its inverse is 

2T 0 -24lT -12 

R-‘(T)=1 * 26/T 0 0 

A -24/T 0 12/T 6 

-12 0 6 4(T2 -6)/T 

(3.4) 

, A=T’-24 (3.5) 

Let us write down the components of the vector function V(t, T), using the last expression 
for the matrixK’(T) and formula (2.4); allowing for the fact that T 2 21r, we can estimate them as 
follows: 

Iv,kT)l= 
12T2sinr+24r-12TI ~ 2T+l2 c4T 

TA A A 

I V30. T) I = 
I-24sinr-12r+6TI 6T+24 4T Q---_<- 

TA TA A 

I W. T) I = 
I-12sinr-6Tr+4T2-241G4T2-12G4’J 

TA TA A 

These estimates and definition (3.2) of the function u(T) imply that u(T) s 4T/A. Hence, using (3.3), 
we obtain an estimate for the control function u(r) 

(3.6) 

Since T = 2m, n E N, it follows that for sufficiently large n 

4Tl(T2 - 24) d a/ II x0 11, (3.7) 

Inequalities (3.6) and (3.7) guarantee that constraint (1.2) is satisfied. 
We will describe another way of choosing the completion time T so as to ensure that the control 

function (2.6) will satisfy constraint (1.2). To that end, we construct the function u(T) by numerical 
means, using relations (2.9, (2.6) and (3.2). The function t(T) is uniquely defined by the matrix,4 and 
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Fig. 3 

the vector b of system (2.1), and therefore the construction may be carried out in advance once and 
for all for the given system. 

Figure 3 shows a graph of the function u(T). As might have been expected, it turned out that the 
maximum value of the control function was lower. the longer the time of motion of the svstem to its 
terminal state. As the completion time of the process one can choose any time 

GJ 6 anI.+ III 

4. SATISFACTION OF THE CONSTRAINTS 
ON THE PHASE COORDINATES 

T for which 

(3.8) 

We now turn to the problem of choosing T so as to ensure that constraints (1.8) are satisfied. In 
the notation adopted above, the solution of system (2.1) beginning at time t = 0 from the point x0, 
is 

x(r) = +x0 + j; h(T)U(T)cfT) 

Substituting into this formula expression (2.6) for the control function u(t) and using relations (2.5) 
defining the matrix R(t), we obtain 

XV) = W)(xO -I:, h(r)[h’(r)R_‘(T)xOldr) = @(r)(xO -[j; h(*)h’(r)dr]R-‘(T)xO) = 
= @(t)(xO - R(t)R-‘(T)x’) = W(t, T)x” (4.1) 

W(t, T) = @(c)[R(T)- R(t)]R-‘(T) 

As in the case of constraint (1.2) , we propose two ways of determining the values of T that will 
guarantee that condition (1.8) is satisfied. 

We first choose the completion time of the process to be T = 2~n, n E N. We estimate the Euclidean 
norm of the vectorx in terms of the norms of the matrices on the right-hand side of (4.1) (by the norm 
of a matrix we mean the norm of the corresponding operator in Euclidean space). 

It is well known [5] that I I Q(t)1 I * is equal to the maximum eigenvalue cp(t) of the matrix 

IO 0 0 

@‘(t)@(t) 01 0 0 = 
0 0 t2+I t ’ t E IO, Tl 

*oo t I 

It is not difficult to calculate that cp(t) s t’ + 2, whence we obtain 
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11 Q(t) 11s (9 +2)X (4.2) 

The matrix R-‘(T) is symmetric and positive-definite; consequently, its eigenvalues are positive and 
the maximum eigenvalue equals equals the norm of the matrix. In addition [S], the sum of all the 
eigenvalues equals the trace of R-l(T). The form (3.5) of the matrix R-‘(T) implies that the number 
2/T is one of its eigenvalues and 

&R-‘(T) = 2T2 -15 2 

4 T(T* - 24) ’ 7 

Consequently, 2/T is not the maximum eigenvalue and 

11 R-‘(T) 11 d tr R-‘(T) - 2 = 6(T2 - 2, 
T T(T* -24)’ 

T=2m (4.3) 

By the definition of the matrix R 

R(T) - R(r) = j,’ Q(z)dz = j,’ h(z)h’(z)dz 

We will consider the functions sin 2, -cos 2, --z and 1, the components of the vector function h(z), 
as elements of the pre-Hilbert space C2[t, r] of functions, continuous in the intervals [t, T], with scalar 
product 

(f. g) = j,r f(QS(QdT 

Since the functions listed above are linearly independent, it follows that the matrix (R(T)-R(t)), which 
is their Gram matrix, is symmetric and positive-definite [6]. 

Similar arguments show that the matrices R(t) and R(T) are also symmetric and positive-definite, 
since they are Gram matrices of the same linearly independent functions considered as elements of 
the spaces C2[0, t] and C2[0, T], respectively. In addition 

R(T)--R(r)cR(T), O<t 4 T (4.4) 

(an inequality X < Y for symmetric matrices X and Y means that the matrix Y-X is positive-definite). 
Since the norm of a symmetric positive-definite matrix equals its maximum eigenvalue and inequality 
(4.4) implies the corresponding inequality for the eigenvalues of the matrixR(T)-R(t) and R(T)[5], it 
follows that I IR(T)-R(t)11 c I [R(T)1 I. 

To estimate I IR(T)I I, we employ reasoning similar to that used above for the matrixR-l(T). It follows 
from the form (3.4) of the matrix R(T) that the number T/2 is a non-maximum eigenvalue of R(T), 
and therefore 

IIR(T)(Is @R(T)-T12=T(2T2+9)/6, T=~Tw 

It follows from (4.1)-(4.3), the equality ]]pl] = ( rn: + &)%nz and the last relation that 

I pTxW I s II p Ill1 Q(t) Ill1 R(T)- R(t) Ill1 R-‘(T) Ill1 x0 II s 

s (mu +n1;)~(2T~ +9)(T* - 2)(T* + 2# II x0 II /(m2(T2 - 24)) 

Consequently, we can choose the completion time of the process to be those values of T = 21rn for 
which 

(2T2 + 9)(T* - 2)(T* + 2)% ~ m2kd 

T* -24 (mf + m# II x0 II 
(4.5) 

There is another way to determine the value of T for which constraints (1.8) will be satisfied. It follows 
from (4.1) that 



Control of a fourth-order linear system with mixed constraints 869 

l pTx(r) l s I PTW(f, 7-)x0 IS WV) II x0 II, WI = oz;& II W’(L nP II 

We will construct the function w(T) numerically. As this function is uniquely defined by the matrix 
A and the vectors b andp, it suffices to carry out the construction just once. 

Figure 3 shows graph of the function w(T). Obviously, as the duration T of the process increases, so 
does w(T), but not monotonically. As completion time of the motion one can take any T for which the 
value of w(T) satisfies the inequality 

w(T) c wll~” II (4.6) 

5. COMPUTATION OF THE CONTROL 
AND NUMERICAL SIMULATION 

Thus, the following procedure is proposed to construct the control function u(t). First, given the initial 
state vectorx’, choose a value of T- the completion time of the process. The value of T may be sought 
in the form T = 27rn, where the natural number n must be such that conditions (3.7) and (4.5) are 
satisfied. Another way to determine T is through numerical construction of the functions u(T) and w(T) 
and the choice of the value of T for which inequalities (3.8) and (4.6) are satisfied. 

After the completion time T of the process has been determiner+ the control function u(t) is computed 
analytically using (2.6). The expression for the inverse matrix R (T), obtained by using the computer 
program MAPLE, turns out to be quite cumbersome. As an example, we present the element in the 
upper left corner of the matrix, using the notation (2.3) 

‘Ir =2[(?-4-36T2+72)sc+T(8T2-9)c2+36(T2-2)s- 

-~2T(T2-6)c+T5-l4T3+l8][l6T(T2+l5)sc+(T4-96T2+192)c2+ 

+4OT'(T-60)s-8(T4-6T2 +48)c+T6-17T4+48T2 +1921-l 

Figure 4 presents the results of a numerical simulation of the dynamics of system (2.1). The system 
was steered from an initial state x0 = (0,5; -0,5; 05; 0,5) to the origin. The time required to complete 
the process was taken as T = 10. The solid curve is the projection of the phase trajectory on the plane 

x1,x2 =i’1, while the thin curve is its projection on the plane x3, x4 = k3. 
The solid curves in Fig. 5 are graphs of the control function u(t) and the quantity 

occurring in constraint (1.8) as functions of time, for the case ml/m*= 10. For comparison, the dashed 
curves represent the same functions for a completion time T = 5. It is obvious that the quantity IpTx(r)l 
is then reduced, while the maximum modulus of the control function u(r) has increased. 

-0.5 0 u.5 XI.XJ 

Fig. 4 
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